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Abstract. The tropical mangrove ecosystem harbors great potential for carbon offsetting schemes
because of their exceptionally high carbon sequestration potential. These cannot only generate an income
for local communities by financially compensating for the non-exploitation of protected or replanted
stands, but also simultaneously reduce emissions due to forest degradation and deforestation, thereby
helping to counteract the global threat on these forests. As carbon is directly monetized through offsetting
carbon emissions, accurate species-specific estimation of carbon content in trees is essential and reduces
the propagation of errors generated by accounting uncertainties. Accordingly, this study assessed variation
in both carbon fraction and wood specific gravity among and within the 10 mangrove species occurring in
Gazi Bay, Kenya. Significant interspecific differences were found with values ranging from 45.8% (Avicen-
nia marina) to 49.8% (Ceriops tagal) for carbon fraction and from 0.58 (Sonneratia alba) to 0.93 (Pemphis acid-
ula) for wood specific gravity. The influence of environmental factors (soil salinity, stand density, and
elevation a.s.l. as a proxy for multiple interrelated conditions) was investigated, but only elevation a.s.l.
appeared to have a species-specific though moderate influence only on carbon fraction. Significant differ-
ences in carbon fraction and wood specific gravity were found between stem, aerial roots, and branches of
Rhizophora mucronata. In contrast, no significant differences in carbon fraction were found among different
stem tissues of A. marina, C. tagal and R. mucronata, the Bay’s most abundant species. These results provide
insight in carbon content variation, confirming the importance of considering species-specific or even site-
specific values of carbon fraction and wood specific gravity, thereby rendering future carbon accounting
more accurate.
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INTRODUCTION

Mangrove forests are ecologically unique
ecosystems that can be found in tropical and
subtropical latitudes along the land–sea inter-
face, bays, estuaries, lagoons, and backwaters
(Mukherjee et al. 2014). They provide ecosystem

services such as coastal protection, coastal fish-
eries, land-building, wood production, nutrient
cycling, nursery and breeding protection to mar-
ine organisms, and opportunities for ecotourism
(Lee et al. 2014, Murdiyarso et al. 2015). These
directly or indirectly benefit local communities
(Locatelli et al. 2014) as well as human society in

 ❖ www.esajournals.org 1 June 2018 ❖ Volume 9(6) ❖ Article e02306

info:doi/10.1002/ecs2.2306
http://creativecommons.org/licenses/by/3.0/


its entirety through the global scale of such ser-
vices (Lee et al. 2004, Jerath et al. 2016). An
ecosystem service that has recently received
increased scientific attention is the high carbon
(C) sequestration capacity of mangroves (Kauff-
man and Donato 2012, Howard et al. 2014).
Mangroves contain on average 1.023 Mg C/ha,
predominantly due to belowground carbon stor-
age, which makes them one of the most carbon-
rich forest types (Komiyama et al. 2008, Donato
et al. 2011). Mangroves can accumulate large
amounts of peat (Ezcurra et al. 2016) and other
forms of mangrove-derived carbon (Bouillon
et al. 2008), making them very efficient coastal
carbon sinks. They bury carbon at a rate up to 50
times higher than tropical rainforests because
they not only trap their own organic material,
but also litter from rivers and adjacent seagrass
meadows (Bouillon 2011). Despite their role as
important carbon sinks and the worldwide
efforts to reduce carbon emissions, mangroves
are threatened globally by deforestation resulting
mainly from aquaculture and agriculture, but
also by deforestation’s indirect consequences
which include drainage and high nutrient levels
(Mukherjee et al. 2014, Atwood et al. 2017). This
leads to an estimated annual loss of 0.16–0.39%
globally but up to a staggering 8.08% in South-
East Asia (Hamilton and Casey 2016). This is
especially alarming since mangrove forests pre-
sent high attractivity for carbon offsetting
schemes, making their protection a cost-efficient
strategy for climate change mitigation (Siikam€aki
et al. 2012, Sitoe et al. 2014, Murdiyarso et al.
2015) while at the same time providing local
communities with numerous additional ecosys-
tem services (Locatelli et al. 2004).

Carbon stocks can be directly monetized
through carbon offsetting schemes (Jerath et al.
2016), which stresses the need for an accurate
carbon stock assessment (Sitoe et al. 2014). How-
ever, several errors are generated by each level of
the assessment: (1) field measurements, (2) choice
of allometric equation for biomass estimation, (3)
choice of standard wood specific gravity value,
and (4) choice of standard carbon fraction value
(Feldpausch et al. 2010, Thomas and Martin
2012, Chave et al. 2014, Hiraishi et al. 2014,
Njana et al. 2016). The carbon fraction is repre-
sented as a mass/mass ratio and used as a con-
version factor to determine the amount of carbon

for a given amount of dry biomass (Hiraishi
et al. 2014). Although the largest error is caused
by the choice of the allometric model (Bastin
et al. 2015), variation in wood specific gravity
(Chave et al. 2009) and carbon fraction (Thomas
and Martin 2012, Rodrigues et al. 2014) can also
propagate important deviations. Even small dif-
ferences among these parameter values can have
important consequences, as, for example, an
increase of the mean carbon fraction of all trees
from 50% to 51% would result in a 7 9 109 tons
overestimate of carbon globally (calculated for
an estimated forest area of 4.1 9 109 ha; Dixon
et al. 1994, Jones and O’Hara 2016).
Until now, research mainly focused on varia-

tion in wood density in tropical terrestrial forests
(Muller-Landau 2004, Chave et al. 2005, Slik
et al. 2008, Bastin et al. 2015). Much less is how-
ever known on the variation in mangrove wood
density (Santini et al. 2012, Njana et al. 2016),
whereas the mangrove carbon fraction in partic-
ular has been understudied (Jones and O’Hara
2016). The Intergovernmental Panel on Climate
Change (IPCC) provides a standard value for
mangroves of 45.1% carbon on a mass basis (Hir-
aishi et al. 2014), but previous research has
demonstrated that values can vary among spe-
cies, within species, and even among tree tissues
(Lamlom and Savidge 2003, Negi et al. 2003,
Khan et al. 2007, Kauffman et al. 2011, Jones and
O’Hara 2016). Furthermore, a positive relation-
ship between wood specific gravity and carbon
fraction is expected due to the high carbon con-
tent of wood chemical components (i.e., lignin)
which are commonly more important in denser
wood, but this has not yet been demonstrated
(Lamlom and Savidge 2006, Thomas and Mal-
czewski 2007).
Out of the 10 mangrove species reported for

Kenya, where the present study took place, only
two species-specific carbon fractions have been
established (Kauffman et al. 2011). Furthermore,
the effect of prevailing environmental conditions
in mangrove ecosystems, such as salinity and
tidal regime, is not taken into account when
determining carbon parameters (Rodrigues et al.
2014). E. Vlaminck (unpublished results) for exam-
ple indicates influences of forest structure on the
carbon content of Rhizophora mucronata but found
no significant effect of salinity on three mangrove
species in Gazi Bay, Kenya. Although their
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precise effect on carbon fraction remains as yet
unidentified, environmental conditions have—at
a larger scale—been shown to be important fac-
tors to consider when estimating carbon stocks
with high accuracy (Rovai et al. 2016).

The aim of the study was to accurately esti-
mate and compare potential sources of variation
in carbon fraction and wood specific gravity in
mangrove trees at species, tree organ, and tissue
level while determining the species-specific effect
of environmental conditions. Two main hypothe-
ses were formulated: (1) Carbon content is equal
for all species, and (2) carbon content is equal
within a species and under all environmental
conditions. Additionally, we compared two
different methods for carbon fraction measure-
ment: loss-on-ignition (LOI) and elemental analy-
sis (EA), as well as two methods for salinity
measurement.

The research was performed in a tropical bay
in Kenya where a community-involving project
called Mikoko Pamoja sells carbon offsetting
credits to generate income for its members and
the inhabitants (Huxham 2013). Community
members gather in village meetings and desig-
nate projects to invest profits in, such as the
improvement of the education system and the
water and sanitation quality of the village
(Abdalla et al. 2016). In return, the community
protects and replants mangrove forest, enhanc-
ing biodiversity, carbon storage but also the
inhabitants’ livelihoods. Plan Vivo, the organiza-
tion providing the legal framework, endows cer-
tificates after thorough controlling of, among
others, carbon stocks. Because part of the com-
munity’s income depends on sequestered carbon,
it is crucial to find accurate estimations of specific
carbon fraction and wood densities and to assess
main sources of variation herein. We intended to
identify patterns and processes of general inter-
est regarding carbon fraction and wood specific
gravity in mangroves, in this case specifically in
a region where a carbon offsetting project has
already been initiated.

MATERIALS AND METHODS

Study area
Gazi Bay (4°220 S, 39°300 E), located approxi-

mately 50 km south of Mombasa (Kenya), is a
shallow coastal water system of approximately

15 km2 (including the mangrove forest) with a
tidal range of around slightly more than 4.0 m
(Kitheka 1996). Two tidal creeks, Kinondo and
Kidogoweni, drain into the northern area of the
bay while the Mkurumuji river, the estuary of
which is lined by the southern part of Gazi Bay’s
mangrove forest, is responsible for most of the
freshwater inflow during the rainy season,
together with the Kidogoweni river. Their peak
discharge equals, respectively, 16.7 and 5.0 m3/s
during the long rainy season (Kitheka 1996). In
Kenya, two rainy seasons occur annually; a long
one from April to August and a short one
between October and November (Bosire et al.
2003).
The Bay’s coastline is vegetated by a rich

assemblage of mangrove species (in reference to
the Western Indian Ocean region), as Kenya’s 10
species are found here (Kirui et al. 2008). These
comprise Avicennia marina (Forsk.) Vierh., Bru-
guiera gymnorrhiza (L.) Lamk., Ceriops tagal (Perr.)
C.B. Rob., Heritiera littoralis Dryand., Lumnitzera
racemosa Willd., Rhizophora mucronata Lamk., Son-
neratia alba J. Smith, Xylocarpus granatum Koen.,
Xylocarpus moluccensis (Lamk.) Roem, and, as a
very rare occurrence, Pemphis acidula Forst.
(nomenclature following Tomlinson 2016).

Sampling strategy
The sampling strategy in this study can be sub-

divided into different ecological levels, ranging
from tree community to tree tissue. Carbon frac-
tion and wood specific gravity were measured
on a total of 93 wood samples.
Four major research objectives were put for-

ward to assess the hypotheses on wood specific
gravity and carbon fraction: (1) differences among
the 10 mangrove species found in Gazi Bay; (2) the
inter- and intraspecific effect of environmental gra-
dients including forest structure, salinity, and ele-
vation a.s.l. as a proxy for multiple interrelated
environmental conditions (soil redox potential, soil
type, and inundation regime); (3) differences
between root, branch, and stem wood in R. mu-
cronata; (4) differences within stem tissue types,
from pith to bark, for A. marina, C. tagal, and
R. mucronata. Additionally, determination of nitro-
gen (N) content in wood allowed for C/N estima-
tion and determination of carbon stable isotope
ratios allowed for additional information on envi-
ronmental influence.
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Sampling was conducted during the dry sea-
son between mid-February and mid-March 2017
at five different locations within the Bay with the
aim of covering the largest possible range in
measured environmental conditions (Fig. 1). A
total of 73 trees were sampled within those five
sites, where the number of replicates per species
reflects their abundance in the Bay (Table 1).
Sites varied in their topography (e.g., a basin)
and hence their inundation frequency, but also in
their species composition (i.e., monospecific, spe-
cies-poor, and species-rich stands), tree density,
and relative position compared to river mouths
(see Appendix S1: Fig. S1 for detailed positions
of species).

Trees were selected based on a specific set of
criteria. Firstly, the maximal potential variation
in environmental conditions was integrated in
the sampling design by choosing the most sea-
ward tree, the most landward tree, and trees in
between for each species per specific location.
We thereby maximized the range in elevation
and salinity which could be expected to have an
effect on the carbon content. Secondly, only trees
within a certain D130 range (generally between 8
and 12 cm with differences according to species)
were sampled to reduce any potential bias cre-
ated by tree age (mangrove tree age cannot be
estimated unequivocally). Subsequently, a wedge
of the stem was taken at D130 using a handheld

A.

B.C.

D.

E.

Kenya

Gazi Bay

" 
S

04'72°4
" 

S
04'42°4

39°30' S 39°33' S

Fig. 1. Location the five sampling sites (translucent boxes, codes A–E) and each mangrove tree within those
sites (black dots). See Appendix S1: Fig. S1 for detailed satellite images of all sampling sites and the exact position
of each sampled mangrove tree. Adapted from Kitheka (1996).
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saw in such way that every tissue type, from pith
to bark, was sampled without making the tree-
fall. Prior to sampling any tree, permission by
the Kenya Marine and Fisheries Research Insti-
tute (KMFRI, Gazi station), as well as a research
permit, was asked and paid. Mangroves in Gazi
Bay represent the local community’s natural capi-
tal because wood carbon is monetized directly
through carbon offsetting schemes. For this rea-
son, we minimized the impact on the trees as
much as possible and maximized the usage of
every single sample in laboratory observations.
Wedges of the stem were preferred over incre-
ment wood cores as this proved to be the most
efficient and feasible method for all wood types,
especially for very dense woods like R. mu-
cronata. To determine differences among tree
components, wood disks of both aerial roots and
branches were obtained for 10 sampled R. mu-
cronata trees. Root samples were taken from the
fifth highest root, 30 cm away from the main
stem. Branch samples consisted of the lowest
branch exceeding 3 cm in diameter, again 30 cm
from the main stem.

For each selected tree, the environmental con-
ditions that could potentially explain variation in
wood specific gravity or carbon fraction were
measured. Tree height was obtained using a scale
hypsometer (0.1 m precision). Stand density and
species composition in the direct vicinity of each
sampled individual were assessed according to

the Point-Center Quarter Method as in Mitchell
(2010). Tree positions were obtained using a
handheld GPS (Garmin, Schaffhausen, Switzer-
land). Salinity was measured with a handheld
refractometer (VWR, Leuven, Belgium) on inter-
stitial water samples at three points around the
tree, about 50 cm from the stem and at a depth
of 20 cm. This was done per location within a
two-hour time window after a single spring tide
to maximally standardize measurements. How-
ever, because salinity measurements were highly
variable around a single tree (differences up to
20& for distances <2 m), we decided to apply an
additional method that is less dependent on the
moment of soil water extraction and could serve
as a comparison for the direct extraction method.
Around each tree, three holes of 20 cm depth
were dug, after which a small soil sample was
extracted and placed in a coded plastic bag.
These samples were dried for 48 h at 70°C, after
which they were weighed, ground using a mor-
tar and pestle and suspended in an equal weight
of freshwater (50:50 W : W). Once homogenized,
the salinity was again obtained on the clear
supernatant with the refractometer. To obtain
elevation above sea level, strips of masking tape
coated with water-soluble iodopovidone, turning
the strip sections reddish, were applied to the
stem right before high tide. When the tide
retreated, the exact elevation of an individual
could be calculated by subtracting the height of

Table 1. Carbon fraction and wood specific gravity values of all 10 mangrove species.

Species N Carbon fraction (%) Standard error Wood specific gravity Standard error

Avicennia marina 20 45.82 0.28 0.76 0.02
Bruguiera gymnorrhiza 5 49.01 0.49 0.84 0.01
Ceriops tagal 10 49.82 0.25 0.85 0.01
Heritiera littoralis 5 48.07 0.11 0.84 0.01
Lumnitzera racemosa 6 47.43 0.42 0.82 0.03
Pemphis acidula 1 48.60 0.93
Rhizophora mucronata
Stem 10 47.35 0.20 0.88 0.01
Branch 10 45.82 0.21 0.83 0.01
Root 10 45.45 0.43 0.78 0.01

Sonneratia alba 5 48.47 0.03 0.58 0.03
Xylocarpus granatum 5 47.77 0.41 0.71 0.02
Xylocarpus moluccensis 6 48.83 0.71 0.82 0.04
Mean stem 73 47.23 1.78 0.80 0.09

Notes: Mean values of carbon fraction and wood densities and their standard error of the mean for all sampled species.
Site-specific values for wood specific gravity are provided and can be incorporated in allometric equations, while the carbon
fractions serve as biomass conversion factors. Pemphis acidula was only sampled once due to insufficient suitable individuals
(site rarity) and shrub-like physiognomy.
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that particular tidal phase (using the tides
table for Kilindini harbor in Mombasa, the near-
est site with such data) with the observed water
limit on the stem (D. Di Nitto, personal communi-
cation). Elevation a.s.l. is believed to provide the
most robust method as it does not fluctuate
between tides or among seasons, but it com-
prises many interrelated variables that cannot be
distinguished.

Determination of wood specific gravity
Before carbon content analysis, whole wedges

—including bark—were submerged in water for
wood specific gravity measurements according
to the water displacement method described in
Chave (2005). The displaced water mass,
weighed with a 0.01 g precision balance, corre-
sponds to the volume of the sample, taking into
account water salinity and temperature as well
as the volume of the pincer used to submerge the
sample. Wedges were subsequently oven-dried
at 65°C until they reached a stable weight. Wood
specific gravity was then calculated by dividing
green sample volume (i.e., the volume before
oven-drying) by dry weight and is in this case
often also referred to as wood specific gravity in
the literature.

Determination of carbon fraction
The carbon fraction was obtained using two

different methods: EA and LOI, using the same
subsamples of a single wedge. Each subsample
was sawn off ensuring all tissue types, from pith
to bark, were represented in the same propor-
tions as they would occur in the stem because
intra-stem variability in carbon fraction is a com-
mon feature in many species (Thomas and Mar-
tin 2012). For the within-stem study, every
subsample was subdivided into three pieces,
including the bark separately and two equally
divided stem pieces (i.e., radially from pith to
bark) for the most abundant species, being
A. marina, C. tagal, and R. mucronata. Per species,
five samples were radially subdivided, resulting
in a total of 45 subsamples analyzed on carbon
fraction. In the case of selected (tropical) species,
there is no visible differentiation between heart-
and sapwood, as used or referred to in Thomas
and Martin (2012). Subsamples were ground to
fine homogenous powder using a mixer mill
(Retsch MM 400, Haan, Germany).

For the EA, 2–3 mg of homogenized sample
material was placed in small tin foil recipients
which were folded and placed in a CN analyzer
(Flash Analyzer, Thermo Scientific, Waltham,
Massachusetts, USA) which detects CO2, N2,

12C,
13C, 14N, and 15N content. The remaining wood
powder samples were used for carbon fraction
estimation using the LOI method adapted from
Negi et al. (2003). Wood organic carbon was
burnt using a muffle furnace at 500°C for 4 h after
which the remaining ash weight can be used to
extrapolate the carbon fraction.

Data analysis
All statistical analyses were performed using R

statistical software (R Core Team 2016). We used
the non-parametric Spearman rank test to test
for correlation between LOI and EA for carbon
content, and for correlation between directly
extracted salinity and soil sample salinity.
An ANOVA was performed to test for differ-

ences in carbon content and wood specific gravity
both between species and between R. mucronata
components when assumptions of normality (us-
ing a Shapiro test) and homoscedasticity (using a
Levene’s test) were not violated. A non-para-
metric Kruskal–Wallis test was used when these
assumptions were not met. Tukey honestly signif-
icant difference (HSD) tests were used to detect
contrasts between species. For the within-stem
carbon (and nitrogen) content, a two-way
ANOVA including species, tissue type, and an
interaction was used to test for species-specific
differences among stem components.
When evaluating effects of environmental con-

ditions on carbon content and wood specific grav-
ity along the gradient, different strategies were
applied. First, a principal component analysis
(PCA; with the vegan package, Oksanen et al.
2016) was used to visualize relatedness of vari-
ables and to look for combinations of variables
that could explain variation. Secondly, simple and
polynomial regressions were used to detect trends
in variation in wood carbon and wood specific
gravity along elevation a.s.l. and directly extracted
salinity values. Because the species variable was
thought to cause most variation and thereby
highly influence these regressions, general linear
models including elevation or salinity, species, and
an interaction term as predictors were made using
the car package (Fox et al. 2016). A significant
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interaction could indicate species-specific effects.
Only the most abundant and broad-ranging spe-
cies were used for the latter analyses.

RESULTS

Comparison of methods for salinity and carbon
fraction determination

A significant negative correlation (n = 50,
Spearman q = �0.34, P = 0.02) was found
between the directly extracted salinity and soil
sample salinity methods. Both carbon fraction
methods, EA and LOI, performed on 20 Avicennia
marina samples were non-significantly positively
correlated (n = 20, Spearman q = 0.18, P = 0.48).

Interspecific variation in studied wood
characteristics

ANOVA tests showed highly significant inter-
specific differences in carbon fraction (F = 14.176,
P < 0.0001), wood specific gravity (F = 42.446,
P < 0.0001), and carbon stable isotope ratios
(d13C; F = 4.84, P < 0.0001; Fig. 2). Assumptions
were met, except for one single group correspond-
ing with carbon fractions of A. marina being not
normally distributed (Shapiro test: P = 0.02).
Appendix S2: Tables S1–S3 provide the output of
the Tukey HSD test. Table 1 provides species-spe-
cific values of carbon fraction and wood specific
gravity. Additionally, a significant correlation was
found between: carbon fraction and wood specific
gravity (n = 72, Spearman q = 0.42, P = 0.0002);
directly extracted salinity and d13C (n = 52, Spear-
man q = 0.49, P = 0.002); and carbon fraction and
d13C (n = 72, Pearson q = 0.33, P = 0.004; Appen-
dix S1: Fig. S2).

Inter- and intraspecific effects of environmental
conditions on studied wood characteristics

The PCA generated two first principal compo-
nents explaining 42% of the total variation and no
consistent trends were detected (Appendix S1:
Fig. S3). We then focused on explaining variation
in both carbon fraction and wood specific gravity
using general linear models on the environmental
variables used for the initial hypothesis: elevation
a.s.l. and salinity, with a strong preference for ele-
vation a.s.l. because of its robustness compared to
salinity (Discussion).

General linear models included species, eleva-
tion (or salinity), and their interaction as

predictors for carbon fraction and wood specific
gravity. Only the most abundant and broad-ran-
ging species (i.e., A. marina, Ceriops tagal and Rhi-
zophora mucronata) were included because other
species result in small scattered clusters due to
their narrow elevational range, making their inter-
pretation irrelevant (Fig. 3). The effect of the spe-
cies factor on both response variables was highly
significant (P < 0.0001), confirming the outcome
of previous ANOVAs. The effect of the elevation
(and salinity) factor was not significant (P = 0.33
for carbon fraction, P = 0.17 for wood specific
gravity), indicating the absence of an overarching
effect on mangrove species in general. The inter-
action term was only significant for the carbon
fraction (n = 28, F = 5.736, P = 0.009), suggesting
a species-specific effect of elevation. Interaction
terms were not significant (P = 0.12 for carbon
fraction, P = 0.48 for wood specific gravity) when
substituting elevation with salinity.

Variation in studied wood characteristics among
tree components in Rhizophora mucronata
Carbon fraction and wood specific gravity

differed significantly among R. mucronata tree
components (branch, root, stem; Fig. 4). For the
carbon fraction, we used a Kruskal–Wallis test
(n = 30, v2 = 18.263, P = 0.0001) because the root
replicates were not normally distributed (Shapiro
P = 0.02). A pairwise t test comparison with
Holm correction indicated contrasts between tree
components while counteracting the problem of
multiple comparisons. Significant differences in
wood specific gravity were found between all
components using an ANOVA followed by a
Tukey HSD test (n = 30, F = 26.570, P < 0.0001).

Variation in studied wood characteristics among
stem tissues from Avicennia marina, Ceriops
tagal and Rhizophora mucronata
A two-way ANOVA indicated significant differ-

ences between species (n = 45, F = 4.866, P = 0.013;
Fig. 5), but neither the tissue parameter (P = 0.30)
nor the interaction (P = 0.44) were significant.

DISCUSSION

Comparison of methods for carbon and salinity
measurements
The two different methods of carbon content

determination which were tested, the LOI
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Fig. 2. Boxplots illustrating species-specific values in (A) carbon fraction (% of dry weight), (B) wood specific
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method and EA, correlated very poorly
(q = 0.26, P = 0.29). Furthermore, the LOI led to
a much higher carbon content of Avicennia marina
as compared to EA (resp. 50.82% and 45.82%). In

contrast, E. Vlaminck (unpublished results) found
a significant underestimation of LOI (44.99%)
compared to EA (47.51%) for A. marina, Rhi-
zophora mucronata and Sonneratia alba taken
together, but also a similar weak positive correla-
tion (q = 0.48, P < 0.001) for methods expected
to yield identical results. Variation between
methods could be explained by multiple factors
related to the LOI procedure. It was shown that
relative ash weight resulting from LOI is influ-
enced by sample item size, exposure time, and
the position of crucibles in the furnace (Heiri
et al. 2001). Actual, albeit small, differences in
carbon content could therefore be confounded
because of the LOI procedure. Based on this
study’s data and the fact that EA is more com-
monly used in literature (Mitra et al. 2011, Tho-
mas and Martin 2012, Jones and O’Hara 2016),
EA should be strongly preferred for carbon con-
tent analysis. Although LOI is cheaper and easier
to perform, which is especially important in
countries with constraints as to equipment, it is
also less reliable.
The two different salinity measurement meth-

ods, soil sample salinity and directly extracted
salinity, are unexpectedly negatively correlated
(q = �0.34, P = 0.02). However, soil sample salin-
ity is suspected to be very dependent on soil type
(i.e. organic or mineral/sandy) because organic
soils proportionally hold more saltwater than
mineral/salty substrates on a weight basis. Rela-
tively more salt will thus remain in the organic
soil after oven-drying. Therefore, we only used
directly extracted salinity for further analysis,
which is thought to directly reflect the interstitial
water salinity available for a mangrove and is
more frequently used in the literature (Matthijs
et al. 1999, Santini et al. 2012). We found an
increase in both salinity and variation in salinity
around a single tree when proceeding to more
landward trees, confirming previous results
found in one of the same sites (Matthijs et al.
1999). Sampling in the dry season reflects the
most demanding conditions as regards salinity,

gravity, and (C) isotopic composition (d13C in &). Thick horizontal bars represent group medians, crosses repre-
sent means, and the whiskers extend until the lowest/highest value still within 1.5 IQR of the lower/upper quar-
tile. ANOVA tests showed significant differences between species (see Appendix S2: Tables S1–S3 for Tukey HSD
test outputs). The number of replicates per groups is as in Table 1.

(Fig. 2. Continued)

Fig. 3. The effect of elevation above sea level (a.s.l.) on
(A) carbon fraction (% of dry weight) and (B) wood
specific gravity for the species with the broadest eleva-
tional range; Avicennia marina (red dots), Ceriops tagal
(green triangles), and Rhizophora mucronata (blue squares)
with indication of the respective regression lines.
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the wood record of its effect covers however vari-
ous seasons and integrates site conditions. Salinity
is an important variable as it has been shown to
cause stunted growth of mangroves, influencing
the vessel density and leading to decreased bio-
mass and carbon storage (Schmitz et al. 2006,
Mitra et al. 2011). However, because salinity is a
punctual measurement and thus dependent on
the season and the moment of extraction between
two tides (Schmitz et al. 2006), elevation a.s.l. was
also included and preferred as a main predictor
for analyses. Although both are indirectly related,
elevation also contains more information as it can
be considered a composite proxy for multiple
interrelated environmental conditions including
flooding regime, soil redox potential, and sulfide
concentration (Matthijs et al. 1999).

Variation in carbon fraction and wood specific
gravity

Interspecific variation.—We studied variation in
carbon content of mangroves along environmen-
tal conditions and among species to determine
the main factors influencing its sequestration.

The species factor was shown to be the most
important source of variation with substantial
differences in carbon fraction (from 45.8% in
A. marina to 49.8% in Ceriops tagal) and high dif-
ferences in wood specific gravity (from 0.53 in
S. alba to 0.93 in Pemphis acidula). Large differ-
ences in carbon fractions are not surprising, as a
review from Thomas and Martin (2012) listed
values ranging from 41.9% to 51.6% based on 134
tropical species, and values ranging from 44.4%
(Laguncularia racemosa) to 47.1% (S. alba) were
found in mangrove species specifically (Kauff-
man et al. 2011, Rodrigues et al. 2014). Thomas
and Malczewski (2007) suggest species with high
lignin content tend to have higher carbon
fractions, which might partially explain found
differences. Indeed, different proportions of car-
bon-containing chemical compounds between
species, but also within species and between tis-
sues, lead to varying carbon fractions because
compounds themselves differ in carbon content.
Lignin has a higher carbon content (63–72% on a
mass/mass ratio) than cellulose (42%; Lamlom
and Savidge 2006), explaining why lignin-rich

Fig. 4. Boxplots illustrating differences in (A) carbon fraction (% of dry weight) and (B) wood specific gravity
among Rhizophora mucronata components (branches, roots, and stems). Thick horizontal bars represent group
medians, crosses represent means, and the whiskers extend until the lowest/highest value still within 1.5 IQR of
the lower/upper quartile. Significance levels are denoted as follows: �P < 0.05; ��P < 0.01; ���P < 0.001.

 ❖ www.esajournals.org 10 June 2018 ❖ Volume 9(6) ❖ Article e02306

GILLEROT ET AL.



trees like conifers tend to have higher carbon
fractions (Lamlom and Savidge 2003, Thomas
and Martin 2012). Moreover, high lignin content
is often found in slow growing species which
are, in turn, commonly also denser (Muller-
Landau 2004). Thomas and Malczewski (2007)
therefore suspected—but did not find—a correla-
tion of carbon fraction with wood density. We
however found a significant correlation suggest-
ing denser mangrove wood indeed contains a
higher carbon fraction, although no conclusions
can be drawn regarding an effect of lignin con-
tent as yet.

The large interspecific differences in wood
density are common (Chave et al. 2009, Howard
et al. 2014, Njana et al. 2016) and are indicative
of a species’ life history strategy. Low wood den-
sities are commonly associated with fast-grow-
ing, early-successional, light-demanding, and/or
disturbance-tolerant species (Muller-Landau
2004, Slik et al. 2008, Bastin et al. 2015), which
could partly explain patterns found. S. alba, for
example, has the lightest wood, and is consid-
ered to be a pioneer species, colonizing mudflats
at the seaward edge of mangrove forests (Friess
et al. 2012, Tomlinson 2016). However, opposite
patterns have been found in A. marina, also a
typical pioneering species, where dense wood
was found to be associated with fast growth and
large tree size (Santini et al. 2012).

Inter- and intraspecific effects of environmental
conditions.—Results suggest the existence of a
species-specific effect of elevation a.s.l. (as a
proxy for inundation regime, soil redox potential
and related factors) on the carbon fraction of
Gazi Bay’s most abundant species (A. marina,
C. tagal, and R. mucronata; Fig. 3). This species-
specific effect is most clear in A. marina, which
has a reduced carbon fraction at higher elevation
a.s.l. (regression: R2 = 0.79, P = 0.003) while, in
contrast, C. tagal seems to increase its carbon
fraction with elevation (R2 = 0.31, P > 0.05). Lit-
erature to compare these results with is very
scarce. Other studies found neither an effect of
tidal frequency (Rodrigues et al. 2014) nor an
effect of salinity (E. Vlaminck, unpublished results)
on carbon fraction in different mangrove species
in respectively Brazil and Gazi Bay. As for wood
specific gravity, no significant influences of either
elevation or salinity were found in this study. It
has been shown that vessel density is higher in

R. mucronata trees growing in saline conditions
(Schmitz et al. 2006), but this does not directly
determine wood specific gravity. Key factors are
rather the total void proportion in wood tissue
and especially the proportion of fiber cell walls
(Beeckman 2016), indicating a gap in knowledge
in explaining variation in mangrove wood
density.
Although our results suggest that there is an

influence of factors related to elevation on the
carbon fraction, the generally weak correlation to
salinity and presumed species-specific responses
which are dissimilar and contrasting for two
widely occurring species A. marina and C. tagal
should incite further research. Finally, it is impor-
tant to note that small variations in carbon
fraction caused by studied conditions are over-
shadowed by interspecific variation found in
carbon fraction and especially wood specific
gravity.
To further look into potential environmental

influence, stable isotope ratios of carbon were
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Fig. 5. Boxplot illustrating differences in carbon
fraction between species and between tissue types
(bark, core, mid). Thick horizontal bars represent
group medians, and the whiskers extend until the low-
est/highest value still within 1.5 IQR of the lower/up-
per quartile. The bark was put aside for each sample,
after which the remaining wedge was radially divided
in half, the core tissue corresponding with the pith of
the tree and the mid-tissue corresponding with the
wood situated between the core and bark samples.
A. marina, Avicennia marina; C. tagal, Ceriops tagal;
R. mucronata, Rhizophora mucronata.
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used because they can be considered as a proxy
for water use efficiency or, in other words, soil
water availability to the growing tree. An
increased d13C corresponds with less discrimina-
tion against heavy 13C isotopes, which can occur
when stomata close as a response to limited
water availability (Farquhar et al. 1989, Galle
et al. 2012) or increased salinity stress (Ball and
Farquhar 1984, Verheyden et al. 2004). The pre-
sent study’s results indicate not only significant
differences in d13C between species, but also a
significant correlation between salinity and d13C,
supporting aforementioned studies. Moreover,
although a significant correlation between car-
bon fraction and d13C was also found, extensive
analyses failed to show a consistent relationship
between salinity and carbon fraction. Altogether,
this could indicate that trees are indeed experi-
encing salinity stress, but that this does not have
an effect on the carbon fraction.

Variation among tree components in Rhizophora
mucronata.—Results show significant within spe-
cies variation at the organ level in R. mucronata.
Similar to variation among species, wood specific
gravity again accounts for the largest variation in
carbon per biomass volume (relative differences
up to 16% between root and stem). In accordance
with the literature, we found both wood specific
gravity and carbon fraction to be higher in the
stem as compared to branches (Swenson and
Enquist 2008) and roots (Chave et al. 2009,
Rodrigues et al. 2014). But because the propor-
tion of root biomass can be particularly high in
mangroves (Komiyama et al. 2008), a lower
wood specific gravity and carbon fraction could
lead to biased figures if stem values are used for
the whole tree volume-to-carbon conversion. A
study in Gazi Bay even suggests that root bio-
mass (38.64%) can surpass stem biomass
(36.13%) in R. mucronata (Kirui et al. 2006).
Because this prominent root proportion has been
shown to vary significantly with environmental
conditions like salinity and stand density
(Adame et al. 2017), an error is generated even
when using species-specific allometric equations.
Equations that have been developed using man-
grove trees growing under a wide array of condi-
tions might minimize the bias because wood
specific gravity is indirectly included through
weighing of dry wood mass when developing
equations. Differences in carbon fraction among

tree components are however usually not
accounted for but, ideally, they should be
included in calculations as a conversion factor
for obtained component-specific biomass (Rodri-
gues et al. 2014).
Variation among stem tissues in Avicennia marina,

Ceriops tagal, and Rhizophora mucronata.—Car-
bon fractions do not differ significantly within
the stem of A. marina, C. tagal, and R. mucronata,
the Bay’s most abundant species. This is fortu-
nate regarding the complexity of carbon stock
calculations. Negi et al. (2003) however found
consistently lower carbon fractions in bark tissue
of eudicotyledonous evergreen eudicots com-
pared to inner stem wood (resp. 38.35% � 5.82%
and 44.91% � 0.89% for 13 species). Hossain
et al. (2016) found a similar trend in the man-
grove species Kandelia candel. However, opposite
results have also been found; a lower carbon
fraction in stem wood compared to stem bark in
the mangrove Kandelia obovata (Khan et al. 2007)
and an increasing carbon fraction from pith to
bark in the sugar maple (Acer saccharum; Lamlom
and Savidge 2006). This indicates that inconsis-
tencies in intra-stem variability could be species-
specific (Thomas and Martin 2012), although
bark is nonetheless expected to have a higher car-
bon fraction because of its higher lignin content
(Jones and O’Hara 2016).
Subsamples were too small for reliable density

calculations, so the magnitude of variation in
wood specific gravity within the stem remains
unknown. Yet, it is known that species-specific
trends in wood density from pith-to-bark exist in
tropical (Bastin et al. 2015) as well as temperate
species (Woodcock and Shier 2002) and are
related to the tree life strategy (shade-bearing vs.
light-demanding). Fortunately, intra-stem varia-
tion only accounts for minor differences that do
not introduce a significant bias in carbon
accounting (Bastin et al. 2015).

Implications for carbon stock assessments
Carbon stock assessments suffer from multiple

sources of error generated by different account-
ing levels; from assessing stand density, to tree
biomass calculation and the considered wood
specific gravity and carbon fraction. Although
the largest error is caused by uncertainties
related to the selection of allometric models
(Chave et al. 2014, Bastin et al. 2015), nonspecific
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carbon fractions (Thomas and Martin 2012,
Rodrigues et al. 2014) and wood densities in par-
ticular (Komiyama et al. 2005, Feldpausch et al.
2012, Bastin et al. 2015) represent a source of
error which may be propagated throughout con-
secutive calculations. More accurate carbon frac-
tions (which serve as conversion factors in
biomass-to-carbon calculations) could become
increasingly important in the near future as
better volumetric biomass assessments are devel-
oping. As an example, recent remote sensing
techniques like airborne laser scanning are evolv-
ing and can provide accurate wood volume esti-
mations (Dalponte and Coomes 2016, Lee et al.
2017). In mangroves specifically, canopy height,
D130, and above-ground biomass were predicted
using remote sensing, which could represent
great opportunities to estimate biomass in a non-
destructive way (Fatoyinbo and Simard 2013,
Cougo et al. 2015).

A standard carbon fraction value (45.1%) for
carbon stock assessments is provided by the IPCC
for mangrove above-ground biomass (Hiraishi
et al. 2014). Thomas and Martin (2012) however
show that a large variation exists in carbon frac-
tions among tree species globally, that they have
been understudied, and that the incorporation of
species-specific fractions could reduce the error
associated with biomass-to-carbon conversions by
2.5–3.7%. The potential importance of volatile car-
bon components in avoiding carbon stock under-
estimation has also been stressed (Lamlom and
Savidge 2003, Thomas and Martin 2012, Jones
and O’Hara 2016). A small-scale experiment on
these volatile components was set up according to
Thomas and Martin (2012), but differences
appeared erratic and unreliable. Similar to global
depositories for wood densities like the Global
Wood Density database (Zanne et al. 2009), Tho-
mas and Martin (2012) advocate the creation of a
carbon fraction database. While a database has
been created based on their literature review, it
does not yet include any of this study’s mangrove
species, which are very wide ranging and abun-
dant. Carbon fractions have only been determined
for Bruguiera gymnorrhiza (46.3%) and S. alba
(47.1%) in Micronesian mangrove forests (Kauff-
man et al. 2011). They do not correspond with
this study’s findings (resp. 49.0% and 48.5%),
suggesting an important site-specific influence on
carbon fractions.

In Gazi Bay, carbon stocks are currently calcu-
lated using general allometric equations created
based on 6 out of 10 mangrove species occurring
in Kenya (Komiyama et al. 2005). The equations
include D130, tree height (H), and wood density (q)
as parameters. General wood density values for 7
out of 10 species are provided by the guidelines
for coastal blue carbon assessments by Howard
et al. (2014). However, it has repeatedly been
shown that not incorporating site-specific wood
densities, from, for example, global depositories,
can lead to significant errors in carbon accounting
(Muller-Landau 2004, Komiyama et al. 2005, Kairo
et al. 2009, Njana et al. 2016). As an example,
Santini et al. (2012) found a higher average wood
density in Western Australia than in New Zealand
for A. marina and even differences between the
seaward fringing forests compared to landward
stands. Likewise, values provided by Howard
et al. (2014) differ considerably from our results,
possibly because of site dependency. We therefore
suggest using this study’s values for both wood
specific gravity and carbon fraction for Gazi Bay
(provided in Table 1), since trees from all 10 man-
grove species occurring in Kenya were sampled
there at five different spread-out locations and
should thus represent reliable values for the whole
forest (Fig. 1). When looking within the site, the
elevation of a tree above sea level was found to
cause variation in carbon fraction. However,
because the largest differences never exceeded 2%
and because effects appear species-specific, we
suggest to not take these effects into account for
the sake of reducing the complexity of calculations
and not to include them in planting or reforesta-
tion guidelines. Furthermore, relative errors prop-
agated through unspecific allometric equations
and unspecific wood densities are still of much
greater magnitude and overshadow these small
differences in carbon fraction caused by the envi-
ronment. If future studies are considered to
increase the precision of accounting even further,
the emphasis should be placed on measuring
wood densities values with more replicates over
the whole Bay. Fortunately, Bastin et al. (2015)
claim that taking small wood samples, 2 cm under
the bark can provide accurate density values while
avoiding the damage a tree suffers when extract-
ing a full radial profile.
This study’s results could benefit future man-

agement strategies in Gazi Bay as large
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differences in carbon densities (i.e., amount of car-
bon in a given volume of wood in tC/m3) are
apparent. For example, S. alba is the only species
used for the present annual mangrove replanta-
tion in Gazi Bay (Huxham 2013) but appears to
contain much less carbon (0.28 tC/m3) than other
abundant species like R. mucronata and C. tagal
(respectively, 0.42 and 0.425 tC/m3) for an equal
volume of biomass. Focusing on S. alba replanting
is therefore not necessarily the best management
decision if only considering the purpose of carbon
offsetting on a volume basis. This is however
without including its growth rate, stand density,
and other non-carbon benefits like coastal protec-
tion. Indeed, in the case of the carbon offsetting
project Mikoko Pamoja, S. alba was chosen
because of its tolerance to exposed conditions in
order to prevent further erosion of an already
degraded beach front (Huxham 2013, Tomlinson
2016). It is also a fast-growing species (Imai et al.
2009). Previous plantations in the context of
Mikoko Pamoja include a monospecific R. mu-
cronata stand and a young A. marina stand, which
represent a better choice for management solely
considering the amount of carbon per volume. To
summarize, both non-carbon benefits and carbon
sequestration potential should therefore be inte-
grated in management decisions.

CONCLUSION

Significant sources of variation were found in
carbon fraction and wood specific gravity, poten-
tially having important influences on carbon
accounting. Substantial interspecific differences in
both carbon fraction and wood specific gravity
were found and diverge from values found in data-
bases, therefore suggesting the preferential usage of
species and site-specific values for carbon account-
ing whenever possible. An effect of environmental
conditions was found but shown to be species-spe-
cific and moderate. Furthermore, considerable dif-
ferences in carbon density were found between
stem, roots, and branches of Rhizophora mucronata
but not within the stem of Avicennia marina, Ceriops
tagal, and R. mucronata. The data gathered in this
study could serve to increase carbon accounting
accuracy in Gazi Bay and possibly in similar sites of
the Western Indian Ocean, important in the sale of
carbon credits which is a part of the local commu-
nity’s income. Besides their potential to increase

carbon accounting accuracy, results could help to
guide future management decisions with regard to
the selection of the most carbon-rich mangrove
species, balancing against all other aspects of sys-
tem-wide C sequestration. It is therefore also an
important factor for local incentive to safeguard
and protect mangrove forests while serving as an
important exemplary project for others to follow.

ACKNOWLEDGMENTS

We would like to thank James G. Kairo, Anne Wan-
jiru, Anne Van Zon, Elias Goossens, Pieter Wolfs, Jan
Bouwens, and David Verstraeten for assistance during
field and laboratory work. Thanks to Bram Vanschoen-
winkel for remarks concerning data treatment and
Luiza de Paula and Columba Martinez for proofread-
ing. We acknowledge the Kenya Marine and Fisheries
Research Institute (KMFRI) for logistic support and
the Flemish International Council (VLIR-UOS) for pro-
viding the financial needs for fieldwork.

LITERATURE CITED

Abdalla, S., J. G. Kairo, M. Huxham, M. Czachur, M.
Wanjiru, and M. Mwamba. 2016. 2015–2016 Plan
Vivo Annual Report: Mikoko Pamoja. Plan Vivo
Foundation, Edinburgh, UK.

Adame, M. F., S. Cherian, R. Reef, and B. Stewart-Kos-
ter. 2017. Mangrove root biomass and the uncer-
tainty of belowground carbon estimations. Forest
Ecology and Management 403:52–60.

Atwood, T. B., et al. 2017. Global patterns in mangrove
soil carbon stocks and losses. Nature Climate
Change 7:523–528.

Ball, M. C., and G. D. Farquhar. 1984. Photosynthetic
and stomatal responses of two mangrove species,
Aegiceras corniculatum and Avicennia marina, to long
term salinity and humidity conditions. Plant Physi-
ology 74:1–6.

Bastin, J. F., et al. 2015. Wood specific gravity variations
and biomass of central african tree species: the sim-
ple choice of the outer wood. PLoS ONE 10:142–146.

Beeckman, H. 2016. Wood anatomy and trait-based
ecology. IAWA Journal 37:127–151.

Bosire, J. O., F. Dahdouh-Guebas, J. G. Kairo, and N.
Koedam. 2003. Colonization of non-planted man-
grove species into restored mangrove stands in
Gazi Bay, Kenya. Aquatic Botany 76:267–279.

Bouillon, S. 2011. Carbon cycle storage beneath man-
groves. Nature Geoscience 4:282–283.

Bouillon, S., et al. 2008. Mangrove production and car-
bon sinks: a revision of global budget estimates.
Global Biogeochemical Cycles 22:GB2013.

 ❖ www.esajournals.org 14 June 2018 ❖ Volume 9(6) ❖ Article e02306

GILLEROT ET AL.



Chave, J. 2005. Measuring wood density for tropical
forest trees. A field manual for the CTFS sites.
Pages 1–7. http://chave.ups-tlse.fr/chave/wood-
density-protocol.pdf

Chave, J., et al. 2005. Tree allometry and improved
estimation of carbon stocks and balance in tropical
forests. Oecologia 145:87–99.

Chave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G.
Swenson, and A. E. Zanne. 2009. Towards a world-
wide wood economics spectrum. Ecology Letters
12:351–366.

Chave, J., et al. 2014. Improved allometric models to
estimate the aboveground biomass of tropical
trees. Global Change Biology 20:3177–3190.

Cougo, M. F., P. W. Souza-Filho, A. Q. Silva, M. E.
Fernandes, J. R. D. Santos, M. R. Abreu, W. R.
Nascimento, and M. Simard. 2015. Radarsat-2
backscattering for the modeling of biophysical
parameters of regenerating mangrove forests.
Remote Sensing 7:17097–17112.

Dalponte, M., and D. A. Coomes. 2016. Tree-centric
mapping of forest carbon density from airborne
laser scanning and hyperspectral data. Methods in
Ecology and Evolution 7:1236–1245.

Dixon, R. K., S. Brown, R. E. A. Houghton, A. M. Solo-
mon, M. C. Trexler, and J. Wisniewski. 1994. Car-
bon pools and flux of global forest ecosystems.
Science 263:185–189.

Donato, D. K. J. B., J. B. Kauffman, D. Murdiyarso, S.
Kurnianto, M. Stidham, and M. Kanninen. 2011.
Mangroves among the most carbon-rich forests in
the tropics. Nature Geoscience 4:293–297.

Ezcurra, P., E. Ezcurra, P. P. Garcill�an, M. T. Costa, and
O. Aburto-Oropeza. 2016. Coastal landforms and
accumulation of mangrove peat increase carbon
sequestration and storage. Proceedings of the
National Academy of Sciences USA 113:4404–4409.

Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick.
1989. Carbon isotope discrimination and photo-
synthesis. Annual Review of Plant Biology 40:
503–537.

Fatoyinbo, T. E., and M. Simard. 2013. Height and bio-
mass of mangroves in Africa from ICESat/GLAS
and SRTM. International Journal of Remote Sens-
ing 34:668–681.

Feldpausch, T. R., et al. 2010. Height-diameter allo-
metry of tropical forest trees. Biogeosciences 7:
7727–7793.

Feldpausch, T. R., et al. 2012. Tree height integrated
into pantropical forest biomass estimates. Biogeo-
sciences 9:3381–3403.

Fox, J., S. Weisberg, D. Adler, D. Bates, G. Baud-Bovy,
S. Ellison, and S. Graves. 2016. R. Package ‘car’.
Companion to applied regression. R Package ver-
sion, 2-1. https://cran.r-project.org/package=car

Friess, D. A., K. W. Krauss, E. M. Horstman, T. Balke,
T. J. Bouma, D. Galli, and E. L. Webb. 2012. Are all
intertidal wetlands naturally created equal? Bottle-
necks, thresholds and knowledge gaps to man-
grove and saltmarsh ecosystems. Biological
Reviews 87:346–366.

Galle, A., J. Esper, U. Feller, M. Ribas-Carbo, and P.
Fonti. 2012. Responses of wood anatomy and car-
bon isotope composition of Quercus pubescens sap-
lings subjected to two consecutive years of summer
drought. Annals of Forest Science 67:809.

Hamilton, S. E., and D. Casey. 2016. Creation of a high
spatio-temporal resolution global database of con-
tinuous mangrove forest cover for the 21st century
(CGMFC-21). Global Ecology and Biogeography
25:729–738.

Heiri, O., A. F. Lotter, and G. Lemcke. 2001. Loss on
ignition as a method for estimating organic and
carbonate content in sediments: reproducibility
and comparability of results. Journal of Paleolim-
nology 25:101–110.

Hiraishi, T., T. Krug, K. Tanabe, N. Srivastava, J. Baa-
sansuren, M. Fukuda, and T. G. Troxler. 2014. 2013
supplement to the 2006 IPCC guidelines for
national greenhouse gas inventories: Wetlands.
IPCC, Geneva, Switzerland.

Hossain, M., C. Saha, S. R. Abdullah, S. Saha, and M.
R. H. Siddique. 2016. Allometric biomass, nutrient
and carbon stock models for Kandelia candel of the
Sundarbans, Bangladesh. Trees 30:709–717.

Howard, J., S. Hoyt, K. Isensee, M. Telszewski, and E.
Pidgeon. 2014. Coastal Blue Carbon: methods for
assessing carbon stocks and emissions factors in
mangroves, tidal salt marshes, and seagrasses.
Conservation International, Intergovernmental
Oceanographic Commission of UNESCO, Interna-
tional Union for Conservation of Nature, Arling-
ton, Virginia, USA.

Huxham, M. 2013. MIKOKO PAMOJA: mangrove con-
servation for community benefit. Plan Vivo Project
Design Document. http://planvivo.org/docs/Mikoko-
Pamoja-PDD_published.pdf

Imai, N., M. Takyu, and Y. Nakamura. 2009. Growth,
crown architecture and leaf dynamics of saplings
of five mangrove tree species in Ranong, Thailand.
Marine Ecology Progress Series 377:139–148.

Jerath, M., M. Bhat, V. H. Rivera-Monroy, E. Casta~neda-
Moya, M. Simard, and R. R. Twilley. 2016. The role
of economic, policy, and ecological factors in esti-
mating the value of carbon stocks in Everglades
mangrove forests, South Florida, USA. Environ-
mental Science and Policy 66:160–169.

Jones, D. A., and K. L. O’Hara. 2016. The influence of
preparation method on measured carbon fractions
in tree tissues. Tree Physiology 36:1177–1189.

 ❖ www.esajournals.org 15 June 2018 ❖ Volume 9(6) ❖ Article e02306

GILLEROT ET AL.

http://chave.ups-tlse.fr/chave/wood-density-protocol.pdf
http://chave.ups-tlse.fr/chave/wood-density-protocol.pdf
https://cran.r-project.org/package=car
http://planvivo.org/docs/Mikoko-Pamoja-PDD_published.pdf
http://planvivo.org/docs/Mikoko-Pamoja-PDD_published.pdf


Kairo, J. G., J. Bosire, J. Langat, B. Kirui, and N. Koe-
dam. 2009. Allometry and biomass distribution in
replanted mangrove plantations at Gazi Bay,
Kenya. Aquatic Conservation: Marine and Fresh-
water Ecosystems 19:63–69.

Kairo, J. G., J. K. Lang’at, F. Dahdouh-Guebas, J. Bosire,
and M. Karachi. 2008. Structural development and
productivity of replanted mangrove plantations
in Kenya. Forest Ecology and Management 255:
2670–2677.

Kauffman, J. B., and D. C. Donato. 2012. Protocols for the
measurement, monitoring and reporting of struc-
ture, biomass and carbon stocks in mangrove forests.
Working Paper 86. CIFOR, Bogor, Indonesia.

Kauffman, J. B., C. Heider, T. G. Cole, K. A. Dwire,
and D. C. Donato. 2011. Ecosystem carbon stocks
of Micronesian mangrove forests. Wetlands
31:343–352.

Khan, M. N. I., R. Suwa, and A. Hagihara. 2007. Car-
bon and nitrogen pools in a mangrove stand of
Kandelia obovata (S., L.) Yong: vertical distribution
in the soil–vegetation system. Wetlands Ecology
and Management 15:141–153.

Kirui, B. Y., M. Huxham, J. Kairo, and M. Skov. 2008.
Influence of species richness and environmental
context on early survival of replanted mangroves
at Gazi bay, Kenya. Hydrobiologia 603:171.

Kirui, B., J. G. Kairo, and M. Karachi. 2006. Allometric
equations for estimating above ground biomass of
Rhizophora mucronata Lamk. (Rhizophoraceae)
mangroves at Gaxi Bay, Kenya. Western Indian
Ocean Journal of Marine Science 5:27–34.

Kitheka, J. U. 1996. Water circulation and coastal
trapping of brackish water in a tropical mangrove-
dominated bay in Kenya. Limnology & Oceanogra-
phy 41:169–176.

Komiyama, A., J. E. Ong, and S. Poungparn. 2008.
Allometry, biomass, and productivity of mangrove
forests: a review. Aquatic Botany 89:128–137.

Komiyama, A., S. Poungparn, and S. Kato. 2005. Com-
mon allometric equations for estimating the tree
weight of mangroves. Journal of Tropical Ecology
21:471–477.

Lamlom, S. H., and R. A. Savidge. 2003. A reassess-
ment of carbon content in wood: variation within
and between 41 North American species. Biomass
and Bioenergy 25:381–388.

Lamlom, S. H., and R. A. Savidge. 2006. Carbon con-
tent variation in boles of mature sugar maple and
giant sequoia. Tree Physiology 26:459–468.

Lee, J., D. Coomes, C. B. Schonlieb, X. Cai, J. Lellmann,
M. Dalponte, Y. Malhi, N. Butt, and M. Morecroft.
2017. A graph cut approach to 3D tree delineation,
using integrated airborne LiDAR and hyperspec-
tral imagery. arXiv preprint arXiv:1701.06715.

Lee, S. Y., et al. 2014. Ecological role and services
of tropical mangrove ecosystems: a reassess-
ment. Global Ecology and Biogeography 23:726–
743.

Locatelli, T., T. Binet, J. G. Kairo, L. King, S. Madden,
G. Patenaude, C. Upton, and M. Huxham. 2014.
Turning the tide: How blue carbon and Payments
for Ecosystem Services (PES) might help save man-
grove forests. Ambio 43:981–995.

Matthijs, S., J. Tack, D. Van Speybroeck, and N. Koe-
dam. 1999. Mangrove species zonation and soil
redox state, sulphide concentration and salinity in
Gazi Bay (Kenya), a preliminary study. Mangroves
and Salt Marshes 3:243–249.

Mitchell, K. 2010. Quantitative analysis by the point-
centered quarter method. arXiv preprint arXiv:
1010.3303.

Mitra, A., K. Sengupta, and K. Banerjee. 2011. Standing
biomass and carbon storage of above-ground
structures in dominant mangrove trees in the Sun-
darbans. Forest Ecology and Management 261:
1325–1335.

Mukherjee, N., W. J. Sutherland, M. N. I. Khan, U.
Berger, N. Schmitz, F. Dahdouh-Guebas, and N.
Koedam. 2014. Using expert knowledge and mod-
eling to define mangrove composition, functioning,
and threats and estimate time frame for recovery.
Ecology and Evolution 4:2247–2262.

Muller-Landau, H. C. 2004. Interspecific and intersite
variation in wood specific gravity of tropical trees.
Biotropica 36:20–32.

Murdiyarso, D., J. Purbopuspito, J. B. Kauffman, M. W.
Warren, S. D. Sasmito, D. C. Donato, S. Manuri, H.
Krisnawati, S. Taberima, and S. Kurnianto. 2015.
The potential of Indonesian mangrove forests for
global climate change mitigation. Nature Climate
Change 5:1089.

Negi, J. D. S., R. K. Manhas, and P. S. Chauhan. 2003.
Carbon allocation in different components of some
tree species of India: a new approach for carbon
estimation. Current Science 85:1528–1531.

Njana, M. A., H. Meilby, T. Eid, E. Zahabu, and R. E.
Malimbwi. 2016. Importance of tree basic density
in biomass estimation and associated uncertainties:
a case of three mangrove species in Tanzania.
Annals of Forest Science 73:1073–1087.

Oksanen, J., et al. 2016. vegan: community ecology
package. R package version 2.4-1. https://CRAN.
R-project.org/package=vegan

R Core Team. 2016. R: a language and environment for
statistical computing. Version 3.2.2. R Foundation
for Statistical Computing, Vienna, Austria.

Rodrigues, D. P., C. Hamacher, G. C. D. Estrada,
and M. L. G. Soares. 2014. Variability of carbon
content in mangrove species: effect of species,

 ❖ www.esajournals.org 16 June 2018 ❖ Volume 9(6) ❖ Article e02306

GILLEROT ET AL.

https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan


compartments and tidal frequency. Aquatic Botany
120:346–351.

Rovai, A. S., et al. 2016. Scaling mangrove aboveground
biomass from site-level to continental-scale. Global
Ecology and Biogeography 25:286–298.

Santini, N. S., N. Schmitz, and C. E. Lovelock. 2012.
Variation in wood density and anatomy in a wide-
spread mangrove species. Trees 26:1555–1563.

Schmitz, N., A. Verheyden, H. Beeckman, J. G. Kairo,
and N. Koedam. 2006. Influence of a salinity gradi-
ent on the vessel characters of the mangrove spe-
cies Rhizophora mucronata. Annals of Botany
98:1321–1330.

Siikam€aki, J., J. N. Sanchirico, and S. L. Jardine. 2012.
Global economic potential for reducing carbon
dioxide emissions from mangrove loss. Proceed-
ings of the National Academy of Sciences USA
109:14369–14374.

Sitoe, A. A., L. J. C. Mandlate, and B. S. Guedes. 2014.
Biomass and carbon stocks of Sofala bay mangrove
forests. Forests 5:1967–1981.

Slik, J. F., C. S. Bernard, F. C. Breman, M. Van Beek,
A. Salim, and D. Sheil. 2008. Wood density as a
conservation tool: quantification of disturbance
and identification of conservation-priority areas
in tropical forests. Conservation Biology 22:1299–
1308.

Swenson, N. G., and B. J. Enquist. 2008. The relation-
ship between stem and branch wood specific grav-
ity and the ability of each measure to predict leaf
area. American Journal of Botany 95:516–519.

Thomas, S. C., and G. Malczewski. 2007. Wood carbon
content of tree species in Eastern China: interspeci-
fic variability and the importance of the volatile
fraction. Journal of Environmental Management
85:659–662.

Thomas, S. C., and A. R. Martin. 2012. Carbon content
of tree tissues: a synthesis. Forests 3:332–352.

Tomlinson, P. B. 2016. The botany of mangroves. Cam-
bridge University Press, Cambridge, UK.

Verheyden, A., G. Helle, G. H. Schleser, F. Dehairs, H.
Beeckman, and N. Koedam. 2004. Annual cyclicity
in high-resolution stable carbon and oxygen iso-
tope ratios in the wood of the mangrove tree Rhi-
zophora mucronata. Plant, Cell and Environment
27:1525–1536.

Woodcock, D., and A. Shier. 2002. Wood specific grav-
ity and its radial variations: the many ways to
make a tree. Trees 16:437–443.

Zanne, A. E., G. Lopez-Gonzalez, D. A. Coomes, J. Ilic,
S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson,
M. C. Wiemann, and J. Chave. 2009. Global wood
density database. Dryad Digital Repository. https://
doi.org/10.5061/dryad.234

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.
2306/full

 ❖ www.esajournals.org 17 June 2018 ❖ Volume 9(6) ❖ Article e02306

GILLEROT ET AL.

https://doi.org/10.5061/dryad.234
https://doi.org/10.5061/dryad.234
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.2306/full
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.2306/full

